NEW

Redundant Flight Control System

RiCopterControl RiCC developed and produced by RIEGL

The new flight control system RiCopterControl (RiCC) is RIEGL's response to highest safety and reliability requirements and features a fully redundant hardware design. RiCC supports a wide variety of power and control interfaces, straightforward sensor payload integration and thus enables high flexibility in system configuration.

Key features

- redundant hardware system design (including flight controller CPU and sensors) ${ }^{11}$
- sophisticated power management and battery balancing concept
- outstanding build quality for highest reliability, robustness and lifetime
- temperature-calibrated and damped sensors to optimize operation in harsh environments
- resilient to electrical short circuits, CPU or sensor crash failures, cable breaks, etc.
- rigorous in-flight failure detection, handling, and alarming
- highly customizable and optimized for multi-sensorsystem integrations
- powerful telemetry functions (remote control, on-screen-display, operator software, blackbox)
- standard ($433,868,915 \mathrm{MHz}$) or customizable frequencies; MAVLINK-based command and control link 1) partly based on open-hardware project Pixhawk and open-source firmware PX4

Interfaces for sensor payload

Power supply:

$2 \times 5 \mathrm{~V}$ (in total 4 A) $3 \times 7.5 \mathrm{~V}$ (in total 6 A)
$2 \times 12 \mathrm{~V}$ (in total 8 A)
$1 \times 24 \mathrm{~V}$ (8 A)

Control interfaces:

1x RS232
2x UART (3V3)
3x PWM or I/O Pin (3V3)

Integration examples

- RIEGL VUX and miniVUX series
- RIEGL BDF- 1
- ADS-B transponder
- siren, parachute
- strobe-light, landing-light
- data processing hardware
- data transmission hardware

